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ABSTRACT

Major depressive disorder is a serious and highly common mental illness that has negative effects on public health. Side effects of antidepressant
medications and the cost of long-term treatments become a huge burden to both individuals and the healthcare system. Studying the genetic and
epigenetic foundations of this disorder is essential for understanding how it develops and for creating personalized treatment strategies. This review
aims to investigate the positive association of genetic and epigenetic factors with major depressive disorder. Our hypothesis posits that genetic
and epigenetic alterations play a crucial role in the pathogenesis of depression. The findings derived from this review are expected to contribute to
the advancement of more effective management strategies for depression and the development of personalized therapeutic interventions, thereby

informing the formulation of comprehensive public health policies aimed at prevention and improvement.
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INTRODUCTION

Major depressive disorder (MDD) is a highly prevalent psychiatric
illness that significantly impairs an individual's functioning and
represents a significant global public health concern (1, 2). It is
estimated that approximately 280 million people worldwide
are affected by MDD, leading not only to a marked reduction
in quality of life but also to substantial economic burdens on
healthcare systems (3).

From an etiological perspective, MDD is a multifactorial
disorder that cannot be attributed to a single cause (2, 4, 5).
Instead, it emerges from the complex interplay between genetic
predispositions, environmental stressors, neurobiological
dysregulation, and epigenetic modifications (4, 6, 7).

Conrad Waddington defined epigenetics as “the branch of
biology which studies the causal interactions between genes
and their products which bring the phenotype into being” in the
early 1940's. Over the years, the term has come to mean “the
study of heritable changes in gene function that do not involve
changes in the deoxyribonucleic acid (DNA) sequence. “These
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changes, influenced by environmental factors such as stress
and early-life experiences, can alter gene expression and affect
susceptibility to disorders like depression (8).

Recent studies have emphasized the critical role of genetic
polymorphisms and epigenetic mechanisms in determining
individual vulnerability to depression (6-10). Genes associated
with neurotransmitter systems, regulation of the hypothalamic-
pituitary-adrenal (HPA) axis, neurotrophic signaling pathways,
and neuroinflammatory processes have been identified as key
components in the pathogenesis of the disorder (11-15).

Studies reveal that molecular candidates such as solute carrier
family 6 member 4 (SLC6A4), monoamine oxidase A (MAOA),
nuclear receptor subfamily 3 group C member 1 (NR3C7),
brainderived neurotrophic factor (BDNF), and FK506 binding
protein 5 (FKBP5) are frequently reported to be associated with
MDD. Both structural variations and epigenetic modifications in
these genes are believed to influence the onset, progression, and
treatment response of depression (10, 12, 16, 17). Notably, early-
life stressors have been shown to induce methylation changes in
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these genes, which may lead to dysregulation of the HPA axis
and increased susceptibility to depressive disorders (7,9, 18, 19).

This review aims to provide a comprehensive analysis of the
genetic and epigenetic mechanisms associated with MDD, based
on systematic reviews published over the past five years. The
findings are expected to contribute to a deeper understanding
of the molecular underpinnings of MDD and to support the
development of more personalized therapeutic approaches.

The Solute Carrier Family 6 Member 4

Solute carrier family 6 member 4 gene, which encodes the
serotonin transporter protein, plays a central role in depression’s
neurobiology by regulating serotonin reuptake in the synaptic
cleft (20). Genetic polymorphisms and epigenetic alterations in
SLC6A4 have been implicated not only in modulating individual
vulnerability to depression but also in determining disease
severity (21). The serotonin transporter long promoter region
(5-HTTLPR) polymorphism located in the promoter region
of the SLC6A4 gene influences depression development by
altering serotonin transport. Moreover, this polymorphism
has been shown to affect the response to selective serotonin
reuptake inhibitors (SSRIs) (21). Increased methylation
levels of SLC6A4 suppress gene expression, disrupt serotonin
transport, and elevate the risk of depression (22). However, the
definitive relationship between SLC6A4 methylation and SSRI
treatment response remains unclear. Therefore, the potential
of methylation as a reliable biomarker for depression therapy
is still under investigation (23). Additionally, microRNAs
(miRNAs) have been demonstrated to play a significant role
in the pathophysiology of depression. Elevated levels of miR-
17 and miR-92, along with decreased levels of miR-4775, have
been observed in patients with depression. These miRNAs are
reported to target the SLC6A4 gene, influencing stress responses
and hippocampal neurogenesis processes (24). Furthermore, the
pronounced expression of miR-17 in individuals with a history
of physical neglect and miR-92 in those with a history of sexual
abuse suggests that childhood trauma may increase depression
risk through epigenetic mechanisms (24).

The Monoamine Oxidase A

Monoamine oxidase A gene plays a critical role in the
pathophysiology of depression. MAOA is responsible for
metabolizing serotonin, dopamine, and norepinephrine, thereby
regulating their levels and contributing to the maintenance of
neural system homeostasis (25). Specific variations in the MAOA
gene have been shown to influence the metabolism of serotonin
and norepinephrine, thereby increasing individual susceptibility
to depression. Elevated MAOA activity may accelerate the
breakdown of these neurotransmitters, potentially triggering
the onset of depression (22). Additionally, dysregulation of the
HPA axis and increased cortisol levels have been linked to MAOA
activity. Chronic stress has been reported to elevate MAOA
levels, accelerating the degradation of serotonin, dopamine,
and norepinephrine. Studies conducted on animal models have
demonstrated increased activity of both MAOA and monoamine
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oxidase B in subjects under stress, which has been linked to
depression-like behaviors (26). Pharmacological studies have
demonstrated that MAOA inhibitors can suppress enzyme
activity, thereby increasing serotonin and dopamine levels (11).
Specifically, certain pharmacological agents are believed to
inhibit the MAOA enzyme, thereby enhancing neurotransmitter
concentrations, making this mechanism a potential target for
depression treatment (26). In addition to genetic variations,
environmental stressors appear to regulate MAOA activity
through mechanisms that are likely epigenetic in nature. For
instance, chronic stress has been shown to increase MAOA
levels and accelerate serotonin, dopamine, and norepinephrine
degradation, contributing to depressive symptoms (11, 27).
Such stress-related increases in MAOA activity suggest possible
epigenetic modifications, including DNA methylation changes
in promoter regions or histone alterations, which may sustain
higher enzyme expression. Furthermore, MAOA has been
identified among reliable risk genes for MDD (28), reinforcing the
idea that genetic predisposition interacts with environmentally
induced epigenetic regulation to shape individual vulnerability
to depression. Overall, the MAOA gene is considered a
significant risk factor in the genetic basis of major depression.
While hundreds of genes associated with depression risk have
been investigated, the critical role of MAOA in the biology of
depression is particularly emphasized (27).

The Nuclear Receptor Subfamily 3 Group C Member 1

Nuclear receptor subfamily 3 group C member 1 gene encodes
the glucocorticoid receptor (GR), which is sensitive to stress
hormones and is critical for regulating the HPA axis (20).
Hyperactivation of the HPA axis and elevated cortisol levels
are considered key biological mechanisms that increase the
risk of depression. Chronic stress can disrupt an individual's
stress response by affecting GRs via NR3CT, thereby enhancing
susceptibility to depression (20). Studies have found that
individuals exposed to prolonged stress during childhood exhibit
increased expression levels of the NR3C7 gene. This upregulation
may alter GR sensitivity, thereby disrupting normal stress
responses (18). Epigenetic modifications in the NR3C7 gene
have been shown to influence an individual’s ability to cope with
stress, with methylation levels at specific cytosine-phosphate-
guanine (CpG) sites correlating with psychological resilience.
For instance, lower methylation at the CpG 2 site is associated
with greater resilience, whereas higher methylation at the
CpG 4 site has been linked to prenatal depressive symptoms.
It has been suggested that interpersonal traumas experienced
during childhood can induce methylation changes in NR3C7
CpG regions, potentially contributing to the development of
depression (29). Beyond its role in the HPA axis, the NR3C1 gene
has also been implicated in depression through its influence on
brain cholesterol metabolism and synaptic plasticity (14). Recent
studies have indicated a potential link between the NR3C7 gene
and neuroinflammatory processes. It has been reported that
class Il transactivator interacts with depression-associated
genes such as NR3C1, prostaglandin-endoperoxide synthase
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2, and glycogen synthase kinase-3 beta, suggesting that these
interactions may contribute to depression development via
immune system pathways (13). Overall, the NR3CT gene plays
a critical role in depression development through multiple
biological processes, including HPA axis regulation (12),
epigenetic modifications (30), neuroinflammation, and synaptic
plasticity (14). Alterations in its expression status can affect an
individual's ability to cope with stress and their susceptibility to
depression (12).

Brain-Derived Neurotrophic Factor

Brain-derived neurotrophic factor is a key neurotrophic
protein that supports the survival, growth, and differentiation
of neurons. By regulating synaptic plasticity, it plays a crucial
role in cognitive functions and mood regulation (31, 32).
Findings indicate that BDNF levels are significantly decreased
in patients with MDD, and this reduction contributes to the
pathophysiology of depression through various neurological
and molecular mechanisms. In the presence of elevated blood
glucose alongside stress, BDNF levels remain suppressed
for a prolonged period, which may impair neuronal growth
and plasticity. Furthermore, this condition can exacerbate
neuroinflammation, potentially leading to brain volume
reduction (33). Animal studies have demonstrated significantly
lower BDNF levels in the group exposed to both stress and high
blood glucose compared to control subjects (33). A reduction in
BDNF levels in MDD patients has been associated with decreased
CAMP responsive element binding protein 1 (CREB) expression
and phosphorylation. CREB, a key transcription factor involved
in the pathogenesis of depression and mechanisms of treatment
response, has been shown to have increased phosphorylation
at the Ser133 site following chronic antidepressant treatment,
which in turn elevates BDNF and Tropomyosin Receptor
Kinase B levels (30). However, studies on depression models
have reported variable BDNF alterations across different brain
regions. While the decrease in BDNF is more pronounced in
the hippocampus, changes in the frontal cortex have been less
consistent (34). Postmortem studies have also demonstrated
significantly reduced BDNF levels in individuals who died by
suicide, with this reduction being associated with increased
suicide risk. Patients with a history of suicide attempts exhibited
lower BDNF concentrations compared to those diagnosed
with MDD who had not attempted suicide (31, 35). Following
repetitive transcranial magnetic stimulation treatment in
depressed patients, notable increases in BDNF levels alongside
reductions in oxidative stress markers have been observed (35).
Moreover, depressed individuals not receiving antidepressant
therapy showed significantly lower BDNF levels compared to
those undergoing treatment (35). Changes in miRNA expression
have been found to modulate BDNF expression, potentially
triggering depressive symptoms. These findings suggest that
miR-182 and other related miRNAs could serve as biomarkers
for the diagnosis and treatment of depression.

Epigenetic mechanisms play a crucial role in regulating
BDNF expression in depression. DNA methylation and
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histone modifications at the BDNF gene locus can suppress
its transcription, linking early-life stress and environmental
exposures to reduced BDNF levels (24, 31, 32). Additionally,
specific miRNAs, such as mir-17 and mir-92, modulate
BDNF expression post-transcriptionally, with dysregulation
contributing to stress susceptibility and depressive phenotypes
(24). Notably, interventions including antidepressant
treatments and physical exercise may partially reverse these
stress-induced epigenetic alterations, restoring BDNF expression
and promoting synaptic plasticity (30, 36).

Brain-derived neurotrophic factor is initially synthesized as
precursor-pro BDNF and subsequently processed into precursor
BDNF (proBDNF) and mature BDNF (mBDNF) forms. While
proBDNF has been shown to exert detrimental effects on
neuronal cells, mBDNF supports neuronal survival and plasticity.
In patients with MDD, elevated proBDNF levels alongside
decreased mBDNF levels and a reduced mBDNF/proBDNF ratio
have been observed. It is suggested that SSRI antidepressant
treatments help restore this balance (37). Additionally, natural
interventions such as physical exercise have been shown to
increase BDNF levels, producing antidepressant-like effects (36).

Fk506 Binding Protein 5

FK506 binding protein 5 is a key regulator of GR sensitivity and
stress response (12). Due to its role in modulating the HPA axis,
FKBP5 has been implicated in MDD across multiple studies.
Epigenetic modifications and expression levels of FKBP5 may
critically influence an individual's susceptibility to depression
and stress reactivity (16).

Childhood trauma has been associated with epigenetic
modifications of FKBP5, with differential CpG methylation
levels observed in intron 7 of the FKBP5 gene during this
process. Notably, individuals carrying the risk allele rs1360780
of FKBP5 exhibit demethylation in this region following
exposure to childhood trauma (38). Chronic stress and early-
life adversity can induce persistent epigenetic modifications
in FKBP5, including DNA methylation changes in regulatory
regions, which influence GR sensitivity and HPA axis reactivity
(38, 16). Epigenetic regulation of FKBP5 may also interact with
other stress-related genes, such as NR3C7, modulating both
neuroendocrine and neuroinflammatory pathways implicated
in depression (12, 13). However, some studies have failed to
establish a clear relationship between FKBP5 methylation and
depression susceptibility (16). Hyperactivation of the HPA axis
has been identified as a key mechanism in the pathogenesis of
depression (18, 12). It has been demonstrated that GR function
is regulated by a molecular chaperone associated with Heat
Shock Protein 90, and FKBP5 negatively impacts this process by
inhibiting ligand binding and nuclear translocation of GR (12).
Elevated levels of FKBP5 may suppress the negative feedback
mechanism mediated by GR, thereby contributing to the
development of depression (18). FKBP5 expression has been
found to positively correlate with cortisol levels. In patients with
depression, FKBP5 levels were significantly lower compared to
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control groups. Furthermore, the increase in GR levels alongside
the decreasein FKBP5 levels has been proposed as a characteristic
biological marker in individuals with depression (18). In youths
with depressed mothers, FKBP5 expression was significantly
lower compared to those without depressed mothers (18).
FKBP5, together with NR3C7, encodes key proteins that regulate
the stress response via the HPA axis, and FKBP5 is a determinant
of stress sensitivity (9, 12). Due to FKBP5's role in the HPA axis
and stress response, it is considered an important target for
understanding the genetic basis of depression (9, 12). Some
evidence suggests that FKBP5-targeted interventions, including
pharmacological treatments or lifestyle modifications, could
potentially reverse stress-induced epigenetic dysregulation,
thereby normalizing HPA axis function (30, 38).

CONCLUSION

Each gene examined in this review points to different but
interconnected biological processes involved in the pathogenesis
of depression. While genetic make-up determines an
individual's susceptibility to depression, environmental factors
-particularly stress- play a decisive role in the manifestation
of this susceptibility (29). Evidence suggests that adverse
experiences during childhood leave lasting marks on the
epigenetic regulation of certain genes, and these changes can
alter an individual's stress response later in life (9, 18, 19). For
example, epigenetic modifications in NR3CT and FKBP5 have
been shown to mediate gene-environment interactions, linking
early-life trauma to altered HPA axis function and increased
vulnerability to depression (16, 18, 38). Similarly, changes in
BDNF methylation and miRNA regulation can disrupt neuronal
plasticity and cognitive processes, further contributing to
depressive symptoms (31,32, 24). This indicates that depression
is not solely a genetic condition but rather a disorder shaped by
lifelong environmental interactions.

Our research also reveals that the biological basis of depression
is too complex to be reduced to a single mechanism. Various
pathways, ranging from the serotonin transport system (21)
to the regulation of the HPA axis (12), neuronal plasticity
(14), and neuroinflammation (13), highlight the necessity of
a holistic approach to explain how depression affects both
mood and cognitive functions. Moreover, interactions between
genetic polymorphisms and epigenetic modifications in these
pathways may determine not only disease susceptibility but
also severity, course, and comorbidities of depression (7, 15,
29). Furthermore, genetic and epigenetic variations have been
observed to influence individuals' responses to antidepressant
treatments (21, 23). Studies suggest that targeting epigenetic
mechanisms, could enhance treatment efficacy and promote
sustained remission in MDD patients (30, 38). This suggests
that treatment should not only focus on symptoms but also
target the underlying biology.

Developing personalized treatment approaches could be
particularly effective in cases of treatment-resistant depression.
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In conclusion, depression is a multifactorial disorder shaped by
the interaction of genetic predisposition, epigenetic regulation,
and environmental factors. A deeper understanding of these
interactions will allow the identification of predictive biomarkers,
the optimization of individualized therapies, and potentially the
prevention of disease onset in high-risk populations (6, 10, 16,
29). A better understanding of this interaction is crucial for
both preventing the disease and developing more effective and
lasting treatment strategies.
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